THE STRUCTURE OF A NEW ISOMER OF DICARBA-nidoUNDECABORANE(13)

Yu_T. STRUCHKOV *, M. Yu. ANTIPIN, Institute of Organo-Element Compounds, Academy of Sciences, Moscow (U.S.S.R.)

V.I. STANKO, V.A. BRATTSEV, N.I. KIRILLOVA and S.P. KNYAZEV
Institute of Biophysics. Ministry of Health, Moscow (U.S.S.R.)
(Received June 30th, 19:7)

Summary
The intramolecular rearrangement involved in the electrophilic methylation of $7,8-\mathrm{B}_{4} \mathrm{C}_{2} \mathrm{H}_{11}{ }^{\text {- }}$ leads after protonation to the methyl derivative of a new isomer of dicarba-nido-undecaborane(13). By an X-ray structure analysis the latter compound is shown to be 11-methyl-2,7-dicarba-nido-undecaborane(12). It has the structure of an icosahedron with one missing vertex, with the carbon atoms adjacent, one in the open face of the polyhedron and the other in its closed part. The methyl group is attached to the boron atom of the open face bonded to both carbon atoms. The open face has two BHB-bridges which are symmetric relative to its carbon atom. The main interatomic distances are: av. B-B 1.794(8), av. B-C 1.685(7), C-C 1.606(6), B-Me 1.551(8), av. B-H (terminal) 1.08(3), av. B-H (bridging) $1.26(4)$, av. $\mathrm{C}-\mathrm{H} 0.92(4) \AA$.

At present three isomers of dicarba-nido-undecaborane(13) are known. They are 7,8 -, 7,9 - and $2,9-\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{13}$ *, formed by protonation of the corresponding $\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{12}^{-}$anions produced by alkaline degradation of the ortho-, meta- and paracarboranes(12) respectively [2-4]-

The alkylation of the 7,8-dicarba-nido-undecaborate dianion 7,8- $\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}{ }^{2-}$, with alkyl halides in liquid ammonia gives the B-alkyldicarba-nido-undecaborate anion, $B-\mathrm{MeB}_{9} \mathrm{C}_{2} \mathrm{H}_{11}{ }^{-}$, differing by its structure and properties from the known isomers of the $\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{12}{ }^{-}$anion. This novel anion is reversibly protonated by diluted acids to yield a nonpolar compound, $B-\mathrm{MeB}_{9} \mathrm{C}_{2} \mathrm{H}_{12}$ [5]. To elucidate the structure of this novel nido-carborane we undertook its X-ray study.

[^0]Experimental procedure and structure determination
The X-ray experiment was carried out with an automatic diffractometer Syntex $\mathrm{P} 2_{1}$ at $-120^{\circ} \mathrm{C}$. The crystals are rather unstable at room temperature and belong to the orthorhombic space group $P 2_{1} 2_{1} 2_{1}, a 6.58(2), b 10.30(3)$, c 13.74(4) A, V 931(5) $\AA^{3}, M 148.2, D_{\mathrm{m}} 1.04, D_{c} 1.06 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=4$.

The intensities of 878 independent reflections were measured by $0 / 2 \theta$-scan (Mo- K_{α} radiation, graphite monochromator, $2 \theta \leqslant 48^{\circ}$), neglecting the absorbtion corrections. In subsequent calculations 689 reflections with $|F|^{2} \geqslant 20$ were used. The structure was solved with the MULTAN technique using 139 normalized amplitudes $|E| \geqslant 1.4$. The E-series based on the best phase solution revealed all the non-hydrogen atoms. After isotropic refinement to $R=0.144 \mathrm{~B}$ and C atoms were identified unequivocally on the basis of temperature factors and interatomic distances. All 15 hydrogen atoms were then localized with the difference synthesis. The final aniso (B,C)-iso (H) full-matrix refinement led to $R=0.049\left(R_{\mathrm{w}}=0.032\right)$.

Atomic coordinates and temperature factors are given in Tables 1 and 2, interatomic distances in Table 3. All calculations were carried out with XTL programmes on the Nova 1200 computer.

Structure description

The present structure analysis has shown the compound studied to be a new nido-carborane, 11-Me-2,7- $\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{12}$ (I). Its molecule has an ortho-carboranic icosahedral skeleton with one vertex missing see Fig. 1. Unlike the known 7,8$\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{13}$ [2] where carbon atoms are also in the ortho position, the open face of molecule I includes only one carbon atom, $C(7)$, and another, $C(2)$, is situated in the closed part of the polyhedron. The methyl group is attached to the boron atom $B(11)$ of the open face which is bonded to both carbon atoms. The boron atoms of the open face are connected pairwise by hydrogen bridges, $\mathrm{B}(8)$ -$\mathrm{H}(12)-\mathrm{B}(9)$ and $\mathrm{B}(10)-\mathrm{H}(13)-\mathrm{B}(11)$. The molecular structure of I is notice-
(continued on p. 137)

TABLE 1
ATOMIC COORDINATES ($\times 10^{4}$) AND ANISOTROPIC TEMPERATURE FACTORS

$A t o m$	x	y	z	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
$B(1)$	$-1903(8)$	$2413(5)$	$1244(4)$	$19(2)$	$19(3)$	$20(3)$	$2(2)$	$-3(2)$	$-1(2)$
$B(3)$	$-87(9)$	$188(5)$	$2115(3)$	$15(2)$	$21(3)$	$18(2)$	$3(2)$	$0(3)$	$-2(2)$
$B(4)$	$-2660(8)$	$1999(5)$	$2444(4)$	$16(2)$	$20(2)$	$15(2)$	$3(2)$	$0(2)$	$-5(2)$
$B(5)$	$-4093(8)$	$1500(5)$	$1407(4)$	$11(2)$	$22(3)$	$25(3)$	$1(2)$	$-1(2)$	$-2(2)$
$B(5)$	$-2368(8)$	$1054(5)$	$454(4)$	$14(2)$	$19(2)$	$19(2)$	$-2(2)$	$-1(2)$	$0(2)$
$B(8)$	$-1253(9)$	$593(5)$	$2800(4)$	$22(3)$	$19(3)$	$13(2)$	$-2(2)$	$-1(2)$	$1(2)$
$B(9)$	$-3944(9)$	$478(6)$	$2418(4)$	$14(2)$	$23(3)$	$17(3)$	$-1(2)$	$2(2)$	$2(2)$
$B(10)$	$-3747(9)$	$-137(6)$	$1102(4)$	$19(3)$	$23(3)$	$17(2)$	$-5(2)$	$-3(2)$	$-1(2)$
$B(11)$	$-970(8)$	$-356(5)$	$926(4)$	$18(2)$	$18(3)$	$19(2)$	$0(2)$	$0(2)$	$2(2)$
$C(2)$	$-122(7)$	$1296(4)$	$977(3)$	$14(2)$	$22(2)$	$20(2)$	$-1(2)$	$8(2)$	$4(2)$
$C(7)$	$211(8)$	$277(4)$	$1847(3)$	$13(2)$	$18(2)$	$16(2)$	$4(2)$	$-2(2)$	$4(2)$
$C(11)$	$38(9)$	$-1341(5)$	$220(4)$	$29(2)$	$22(2)$	$21(2)$	$10(2)$	$0(2)$	$-1(2)$

TABIEE 2
COORDINATES ($\times 10^{3}$) AND $B_{\text {iso }}\left(\times 10 . A^{2}\right)$ OF HYDROGEN ATOMS ${ }^{\alpha}$

a Terminal hydrogens have the same numbers as corresponding B and C atoms. primed numbers refer to the Me group. H(12) and $\mathrm{H}(13)$ are bridging hydrogens.

TABLE 3
INTERATOMIC DISTANCESd (A)

$B(1)-H(1)$	$1.07(4)$	$C(2)-H(2)$	$0.94(4)$
$B(3)-H(3)$	$1.14(3)$	$C(7)-H(7)$	$0.91(3)$
$B(4)-H(4)$	$1.06(4)$	$A v$.	$0.92(4)$
$B(5)-H(5)$	$1.05(3)$	$C(11)-H(11)$	$0.91(5)$
$B(6)-H(6)$	$1.18(3)$	$C(11)-H(11)$	$1.10(6)$
$B(8)-H(8)$	$1.09(3)$	$C(11)-H(11)$	$0.87(5)$
$B(10)-H(10)$	$1.03(3)$		

Fig. 1. Molecular of 11-tnethyl-2.7-dicarbe-nido-undecaborane(13). Terminal and Me froup hydrogens are not shownis.d. B-B, B-C and C-C bonds 0.006-0.008 A.
TABLE 4
ANGLES ω (degrees)

Angle	Number of angles	Interval of ω	Av. ω	Angle	Number nf anples	Intervol of ω	Av. ω	Angle	Number of angles	Interval of ω	Av, w
Ortho-anulas a				Mela-anglea ${ }^{\text {a }}$				Erooankles			
BCB	4	83,8(3)-65.0(3)	64,4(3)	BCB	5	112.5(4)-120.2(4)	116,3(4)	HCC	2	121(2)	121(2)
CCB	4	66,7(3)-67.4(3)	61,9(3)	CCB	3	110.2(1)-112.1(4)	111,6(1)	HCB	7	115(2)-119(3)	117(2)
BBB	27	86,6(3)-66.6(3)	60,0(3)	BBB	24	102.9(.1)-113.5(.1)	$108.0(4)$	1 BB	32	115(3)-131(3)	$122(3)$
BBC	8	54.5(3)-61.4(3)	58,8(3)	BBC	13	100.7(3)-110,0(1)	10.1.3(1)	HRC	5	118(2)-122(2)	$122(3)$ $120(2)$
CBC	2	55.9(3)-60.6(2)	56.2(2)	Av.						18(2)-12(-)	
Av.			60,0(3)				$110.0(1)$	An.			120(2)
								$\mathrm{HCB}^{\text {b }}$	3	111(3) $\cdots 1113(4)$	113(3)
								HCH°	3	98(5)-410(57)	105(5)
								Av.			108(4)

a Orthoiangles in the triangular faces, metarangles in the pentagons including the open face, bugles in the Me group.
ably distorted from the true icosahedral due to the presence of two carbon atoms in the ortho position. Molecule I is "squeezed" in thr direction $\mathbf{C}(2)$ $C(7)$ showing distortion of both endo and exo angles* (see Table 4).

The average values of external σ-bond lengths. $\mathrm{B}-\mathrm{H}$ (terminal), 1.08(3) it and $\mathrm{C}-\mathrm{H} 0.92(4) \mathrm{A}$. are quite usual for carboranes [6-S]. The B(11)-Me bond length ($1.551(8) A$) is almost the same as that in the closo-carhorane compound studied by us, $1,2,3,6-\mathrm{Me}_{4}-1,2-\mathrm{B}_{10} \mathrm{C}_{3} \mathrm{H}_{5}(1.556(9)$ i) [O]. There are some regularities observed in the interatomic distances of 1, e.g. $1.606(6)$ a $C-C$ distance is intermediate between those values found in closo- and nido-carboranes. e.g. 1.65 A in $1,2-\mathrm{B}_{10} \mathrm{C}_{2} \mathrm{H}_{12}$ [10] and 1.55 A in $1,2-\mathrm{Me}_{2}-1.2-\mathrm{B}_{3} \mathrm{C}_{2} \mathrm{H}_{4}$ [6] This effect could be explained as follows. The carbon atoms of 1.2 -carborane(12) undergo mutual repulsion due to the partial positive charge on both of them and their interatomic distance is increased in comparison with that of nido-carboranes with carbon atoms in the ortho position in the oprn face. where this charge is largely compensated by the negative charge of the face. In the present case the position of the carbon atoms is characteristic for both closo. $\mathrm{C}(2)$. and nidr. C (7). carboranes, and therefore the $\mathrm{C}-\mathrm{C}$ distance has an intermediate value. An electron-withdrawing influence of the carbon atoms on their boron neighbours is also proved by the increase of the corresponding $B-B$ distances to an average of $1.802(8) A$, in comparison with the average of $1.767(8) \mathrm{A}$ hetween the rest of the boron atoms except those in the open face. A similar effect is characteristic for other carborane systems $[10,11]$.

The most interesting fragment of molecule I is its open face $C(7) B(8) B(9)-$ $B(10) B(11)$. The corresponding root-mean-square plane is parallel to the plane $\mathrm{C}(2) \mathrm{B}(3) \mathrm{B}(4) \mathrm{B}(5) \mathrm{B}(6)$ (Table 5). The endo-angles of the open face are not equal (Table 6). The angle at $C\left({ }^{\circ}\right)$ is 9° greater than those at the boron atoms. The exo-angles BBMe are close to the value of 121.7° which is as expected for icosahedral closo-carboranes.

In the open face, interatomic distances are significantly different from those in the closed part of the polyhedral skeleton. The average B-C distance 1.639(7) A in this face is shorter than the others (average $1.703(7$) \AA) due to the smaller coordination number of $C(7)$ and its smaller excessive positive charge [12.13]. On the other hand, the $B-B$ distances in the open face are longer than those in the closed part of the molecule (average $1.875(8)$ and $1.767(8) \AA$, respectiveiy). Similar regularities were also found in other nido-carboranes and their derivatives, e.g. $\left(\mathrm{Me}_{4} \mathrm{~N}\right)^{-}\left[\mathrm{PhCHB}_{10} \mathrm{H}_{10} \mathrm{CPh}\right]^{-}[7],\left(\eta-\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~B}_{0} \mathrm{C}_{3} \mathrm{H}_{11}\right)$ [8] and $\mathrm{Me}_{2} \mathrm{AlB}_{9} \mathrm{C}_{2} \mathrm{H}_{12}$ [14].

The dihedral angles between the open face and the planes of the hydrogen bridges $\mathrm{B}(8) \mathrm{H}(12) \mathrm{B}(9)$ and $\mathrm{B}(10) \mathrm{H}(13) \mathrm{B}(11)$ are 79 and 73°. respectively.

This orientation of the hydrogen shows that the atomic orbitals of the corresponding boron atoms are directed towards the missing vertex of the icosahedral molecule which confirms the view of Hawthorne et al. on the structure of the open face in dicarbollide ions [15].

The direction of the $B-H$ (bridge) apparently represents the direction of the corresponding atomic orbital of the boron atom. Therefore the RBH(bridge)

[^1]TABLE 5
EQ'JATIONS $A x+B y+C z=D$ OF PLANAR MOLECULAR FRAGMENTS AND DEVIATIONS OF THE ATUMS $\triangle(A)$ FROM THESE PLANES

Plane	A	B	\boldsymbol{C}	D	Atom and Δ	
I	-0.08	9.39	-3.43	8.06	C(2)	-0.013(-0.0
					B(3)	$0.018(5)$
					B(4)	-0.012(6)
					B(5)	0.002,5)
					B(6)	. 0.011 (6)
11	-0.06	9.37	-3.50	-6.97	C(7)	$0.076(4)$
					B(8)	-0.071(6)
					B(9)	$0.010(6)$
					B(10)	0.049(6)
					B(11)	-0.088(5)
111	2.90	-1.48	-9.45	-9.66	B(8)	
					B(9)	
					H(12)	
IV	-1.78	-5.99	-7.81	- -6.59	B(10) B(1i) H(13)	

σ Dihedral angles: I/II 0°, 11/1II 79°, II/IV 73°, $111 / 1 \mathrm{~V} 39^{\circ}$.
angle ($\mathrm{R}=\mathrm{H}$ or CH_{3}) should be a valence angle and can be a measure of hybridization of the boron atom involved. The observed values of angle H (terminal) BH (bridge), 102(3)-103(3), and $\mathrm{C}\left(11^{\prime}\right) \mathrm{B}(11) \mathrm{H}$ (bridge), $111(2)^{\circ}$, correspond to the $s p^{3}$-hybridization of the boron atoms of the open face that was previously supposed [13,15,17].

The hydrogen bridges seem to be asymmetric. At least the distance $\mathrm{H}(13)$ $B(11) 1.50(4)$ A e.g. to the boron atom bearing the Me group is markedly longer than the other distance $\mathrm{H}(13)-\mathrm{B}(10) 1.03(4)$ A of the same bridging hydrogen, and the latter distance is close to those for ordinary $\mathrm{B}-\mathrm{H} \sigma$-bonds (average $1.08(3) \AA$). An asymmetry of nydrogen bridges testifies to polarization of the

TABLE 6
$:$
ANGLES ω (degrees) AT ATOMS OF THE OPEN FACE

Angle	ω	Angle	ω	
$\mathrm{C}(7) \mathrm{B}(8) \mathrm{B}(9)$	108.6(4)	$\mathrm{H}(12) \mathrm{B}(8) \mathrm{B}(9)$	41(2)	
$B(8) B(9) B(10)$	102.9(4)	$\mathrm{H}(12) \mathrm{B}(9) \mathrm{B}(8)$	45(2)	
$\mathrm{B}(9) \mathrm{B}(10) \mathrm{B}(11)$	103.3 (4)	H(13)B(10)B(11)	54(2)	
B(10)B(11)C(7)	108.7(4)	H(13)B(11)B(10)	41 (2)	
Av.	105.9(4)	Ar.	45(2)	
B(8)C(7)B(11)	114.7(4)	$\begin{aligned} & B(8) H(12) B(9) \\ & B(10) H(13) B(11) \end{aligned}$	$\begin{aligned} & 94(3) \\ & 85(3) \end{aligned}$	
$C(11) 8(11) B(6)$	120.7(4)	Av. -	90(3)	
$C\left(11^{*}\right) B(11) 8(10)$	125.6(4)	-		
C(11)B(11)C(2)	120.8(4)	- :		
C(11)B(11)C(7)	123.1(4)	\cdots		
Al_{2}	122.6847	- $\quad=$		

three centre BHB bonds with positive charges on the $B(10)$ and possibly $B(9)$ atoms.

Thus the electron density of these atoms should be lower than those of Bi 8) and $\mathrm{B}(11)$ notwithstanding their proximity to the carbon atom.

In conclusion it may be noted that the main geometrical features of the polyhedral skeleton in the molecule studied are caused by the presence of two differently positioned neighbouring carbon atoms and by steric repulsion of the bridging hydrogen atoms in the open face.

References

[^2]
[^0]: * Atom numbering syatem as in ref. 1 .

[^1]: * Endo ancles are the angles in pentagonal fragments of the polyhedral molecule, and exo angles are the angles between the palyhedran edges and the external a-bonds

[^2]: 1 R.M. Adams. Pure Appl. Chem.. 30 (1972) 681 .
 R.A. Wiesboeck and M.F. Hawthorne. J. Amer. Chem. Soc.. 86 (1964) 1642.

 3 F.N. Tebbe. P.M. Garrett. D.C. Young and M.F. Hawthorne. J. Amer. Chem. Soc. 88 (1966) 609.
 F.N. Tebbe. P.M. Garrett and M.F. Hawthorne. J. Amer. Chem. Soc. 90 (1968) 869.

 5 S.P. Knyazev. V.A. Bratisev and V.I. Seanko. Dokl. Akad. Nauk SSSR, 234 (1977) 857.
 I.C. Huffman and W.E. Streib, Chem. Commun., (1972) 665.
 M.R. Churchill and B.G. DeEser. Inorp. Chem.. 12 (1973) 2674.
 M.R. Churchill and B.G. DeBoer. J. Amer. Chem. Soc., 96 (1974) 6310.

 9 N.I. Kirillova, YíV. Goltyapin. M. Yu. Antipin. Yu.T. Struchkovand V.I. Stanko. Izv. Akad. Nauk. Ser. Khim. in press.
 10 R.K. Bohn and. M.D. Bohn. Inorg. Chem.. 10 (1971) 350.
 11 H.V. Hart and W.N. Lipscomb. J. Amer. Chem. Soe.. 89 (1967) 4220.
 12 K. Wade, Inorg. Nucl. Chem. Letters, 8 (1972) 823.
 13 V.I. Stanko. V.A. Brattsev and S.P. Knyazev. Usp. Khim. 44 (1975) 1377.
 14 M.R. Churchill and A.H. Reis, J. Chem. Soc., Dalton Trans.. (1972) 1314.
 15 M.F. Hawthorne, D.C. Young, T.D. Andrews, D.V. Howe, R.L. Pilling, A.D. Pitts. Mi. Reintjes, L.F. Warren and P.A. Wegner. J. Amer. Chem. Soc.. 90 (1968) 879.
 16 W.N. Lipscomb. Boron Hydrides, W.A. Benjamin, New York. 1963.
 17 V.I. Stanko. G.K. Semin and T.A. Babushkina. Dokl. Akad. Nauk USSR. 221 (1975) 1 ± 29.

